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Abstract. We classify and explicitly construct all the irreducible hermitian representations of
the extended Poincaré parasuperalgebra. These representations which include the representations
of the usual extended Poincaré superalgebra as a particular case can serve as a group-theoretical
foundation of parasupersymmetric quantum field theory, i.e. as a general viewpoint to reformulate
the quantum field theory and quantum mechanics of identical particles on the general basis of
paraquantization and supersymmetry.

1. Introduction

It is pretty well known that description of identical particles in classical and quantum physics is
completely different. Whereas in classical physics the identical particles can be enumerated and
individually tracked, in quantum physics, due to Heisenberg’s uncertainty relations, the notion
of particle trajectory loses sense and identical particles become completely indistinguishable.
Due to this and superposition principle the functions describing states of more than one identical
particle should be always either symmetric or antisymmetric with respect to exchange of
identical particles. Moreover, the particles described by symmetric (antisymmetric) functions
obey the Bose–Einstein (Fermi–Dirac) statistics. Due to the theorem about the connection
between spin and statistics, particles obeying Fermi–Dirac statistics are associated with
half-integer spins, i.e. they are fermions, and particles obeying Bose–Einstein statistics are
associated with integer spins, i.e. they are bosons.

The description of a system of fermions or bosons in the so-called field quantization
schemes (known as ‘second quantization’) is also quite different. The field operators for bosons
(i.e. the corresponding creation and annihilation operators) satisfy commutation relations,
whereas those for fermions satisfy anticommutation relations. Thus bosons and fermions obey
different rules and at first sight appear to have completely different physical properties.

The question as to whether they exhaust all possibilities in nature or whether particles exist
that satisfy other statistics and quantization rules has been raised many times, together with
the question as to how bosons and fermions are connected and how they can be transformed
into one another.

At present there are several approaches to clarifying the similarities between Fermi and
Bose statistics. The first is associated with the so-calledparastatistics. It was Gentile [1] in
1940 who first mentioned that there might be other statistics and quantization rules than just
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those found by Fermi and Dirac or Bose and Einstein. This was based on the fact that physical
observables are bilinear forms of creation and annihilation operators but not these operators
alone.

In 1950 Wigner [2] stressed another important fact, namely that the usual canonical
commutation or anticommutation relations of field operators are only sufficient to derive the
equation of motion of a given physical system but not necessary. The necessary conditions
are expressed in terms of double commutation (anticommutation) relations among the field
operators - relations which are much weaker than the usual canonical ones.

In 1953 Green [3] put Wigner’s quantization and Gentile’s statistics together and
introduced the so-called parastatistics.

Let us recall that the creation and annihilation operators of para-fields satisfy the trilinear
relations

[[a+
k , aj ]±, am]− = −2δkmal

[[ak, al ]±, am]− = 0
(1.1)

together with the condition for the existence of a unique no-particle state vacuum

ak80 = 0 for all k

aka
+
l 80 = pδkl80 for all k, l.

(1.2)

Hereak anda+
l respectively denote the annihilation and creation para-field operators,80 is the

vacuum state, the upper (lower) sign corresponds to the para-Bose (para-Fermi) case and integer
p > 0 is the order of a given parastatistics. It should be noted that relations [[a+

k , a
+
l ]±, am]

can be derived by hermitian conjugation of(1, 1) and by use of the Jacobi-like identities.
It is known [4] that the above parastatistics relations reduce forp = 1 to the usual

relations for fermions and bosons, and that the limitp → ∞ for para-Bose (para-Fermi)
statistics yelds in some sense the Fermi (Bose) theories (for other properties of parastatistics,
their generalizations, more recent developments, etc, see, e.g., [5]).

The second approach which clarifies the connections between fermions and bosons is
associated withsupersymmetry—a new kind of symmetry which transforms bosonic states
into the fermionic ones and vice versa, realizes a factorization of the Dirac operator, and so
on. It was first introduced 30 years ago in quantum field theory [6] (refer to [7] for reviews).

Supersymmetric quantum field theory was soon followed by supersymmetric quantum
mechanics [8]. In 1988 this mechanics was generalized to a specialparasupersymmetric
one [9] which deals with bosons and para-fermions. Another approach to parasupersymmetric
quantum mechanics, namely with positive-definite Hamiltonians was proposed in [10]. Since
its inception parasupersymmetric quantum mechanics has been a topics of many papers (see,
for example, [11] and references cited therein) then parasupersymmetric quantum field theory
has appeared and begun to be discussed [12]. In contrast to supersymmetric quantum field
theory, in which field operators satisfy the usual Bose–Einstein or Fermi–Dirac statistics, the
field operators in parasupersymmetric quantum field theory satisfy parastatistics.

In [13,14] the irreducible representations (IRs) of the simplestN = 1 (i.e. including only
one parasupercharge) Poincaré parasuperalgebra were described.

In this paper (using the generalized Wigner method of induced representations) irreducible
representations of the extended Poincaré parasuperalgebrap(1, 3;N) (i.e. the Poincaŕe
parasuperalgebra with an arbitrary numberN of parasupercharges, which includes the internal
symmetry algebra) are classified and explicitly constructed. These representations form a
group-theoretical basis of parasupersymmetric quantum field theory withN parasupercharges,
which is the general standpoint for reformulation of the quantum field theory and quantum
mechanics of identical particles on the general basis of paraquantization and supersymmetry.
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We shall see that some IRs of the extended Poincaré parasuperalgebraalso appear
simultaneously to be IRs of the extended Poincaré superalgebra, so that they bring a deeper
insight into the usual supersymmetric quantum field theory.

2. The extended Poincaŕe parasuperalgebra

The extended Poincaré parasuperalgebrap(1, 3;N) includes ten generatorsPν, Jνσ of the
Poincaŕe group satisfying the usual commutation relations

[Pµ, Pν ] = 0 [Pµ, Jνσ ] = i(gµνPσ − gµσPν)
[Jµν, Jρσ ] = i(gµσ Jνρ + gνρJµσ − gµρJνσ − gνσ Jµρ)
Jµν = −Jνµ µ, ν = 0, 1, 2, 3 gνν = (1,−1,−1,−1)

(2.1)

and 4N parasuperchargesQj

A, Q̄
j

A (A = 1, 2, j = 1, 2, . . . , N) which satisfy the double
commutation relations

[Qi
A, [Q

j

B,Q
k
C ]] = [Q̄i

A, [Q̄
j

B, Q̄
k
C ]] = 0

[Qi
A, [Q̄

j

B,Q
k
C ]] = 4δijQ

k
C(σµ)ABP

µ

[Q̄i
A, [Q

j

B, Q̄
k
C ]] = 4δij Q̄

k
C(σµ)BAP

µ

(2.2)

and the following commutation relations with generators of the Poincaré group:

[Jµν,Q
j

A] = − 1

2i

(
σµν

)
AB
Q
j

B [Pµ,Q
j

A] = 0

[Jµν, Q̄
j

A] = − 1

2i

(
σµν

)∗
AB
Q̄
j

B [Pµ, Q̄
j

A] = 0.
(2.3)

Hereσν are the Pauli matrices,σνσ = −σσν = σνσσ , (.)AB are the related matrix elements,
and the asterisk denotes the complex conjugation.

It can easily be seen that the algebrap(1, 3;N) is a direct and natural generalization
of the extended Poincaré superalgebra [15]. The last one also includes 10 + 4N elements
which satisfy (2.1), (2.3), but instead of (2.2) the superchargesQ

j

A, Q̄
j

A fulfill the following
anticommutation relations:

[Qi
A,Q

j

B ]+ = 0 [Q̄i
A, Q̄

j

B ]+ = 0

[Qi
A, Q̄

j

B ]+ = 2δij (σµ)ABP
µ

(2.4)

which, whenever satisfied, imply that relations (2.2) are also valid. However, the converse is
not true.

Thus, the representations of the extended Poincaré superalgebra appear as
particular representations of a more general algebraic structure—the extended Poincaré
parasuperalgebra(cf the relations of the usual Fermi–Dirac or Bose–Einstein statistics with
parastatistics [5]).

In the following sections we present the classification and explicit construction of IRs of
theN -extended Poincaré parasuperalgebra defined by relations (2.1)–(2.3).

3. Classification of IRs

The IRs of the algebra p(1,3;N) can be specified by the eigenvalues of the appropriate Casimir
operators.

First let us note that the Casimir operator of the Poincaré algebraC1 = PµPµ commutes
with all parasuperchargesQi

A, Q̄
i
A so that it is also a Casimir operator for the Poincaré
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parasuperalgebra. The second less obvious, but nonetheless essential Casimir operator for the
algebrap(1, 3;N) can be obtained by extending the usual Pauli–Lubanski four-vector

Wµ = 1
2εµνρσ J

νρP σ (3.1)

to the following one:

Bµ = Wµ +Xµ (3.2)

whereXµ is defined by the bilinear combinations of parasupercharges:

X0 =
N∑
i=1

1

8
{[Qi

1, Q̄
i
1] + [Qi

2, Q̄
i
2]} X1 =

N∑
i=1

1

8
{[Qi

1, Q̄
i
2] + [Qi

2, Q̄
i
1]}

X2 =
N∑
j=1

i

8
{[Qj

2, Q̄
j

1] + [Q̄j

2,Q
j

1]} X3 =
N∑
i=1

1

8
{[Q̄i

1,Q
i
1] + [Qi

2, Q̄
i
2]}.

(3.3)

As follows from (2.1) and (2.2), the four-vectorBµ satisfies the relations

[Bµ, Pν ] = 0 [Bµ, Jνσ ] = i(gµνBσ − gµσBν) (3.4a)

[Bµ,Q
i
A] = 1

2PµQ
i
A [Bµ, Q̄

i
A] = − 1

2PµQ̄
i
A

[Bµ,Bν ] = iεµνρσP ρBσ
(3.4b)

from which we conclude that the operator

C2 = PµPµBνBν − (BµPµ)2 (3.5)

is the second Casimir operator of the algebrap(1, 3;N).
We shall investigate the relations (2.2), (3.4b), which define an algebra of operatorsBν ,

Qi
A andQ̄i

A for any fixed set of eigenvaluespν of the operatorsPν .
As in the case of the ordinary Poincaré algebra [16] we shall classify IRs of the algebra

p(1, 3; n) according to the eigenvalues ofC1. We distinguish three classes of IRs, namely:

I. The time-like four-momentum case for which

PµP
µ = M2 > 0. (3.6a)

II. The light-like four-momentum case for which

PµP
µ = 0. (3.6b)

III. The space-like four-momentum case for which

PµP
µ = −η2 < 0. (3.6c)

These will be studied separately in sections 4–7. The internal symmetries of the algebra
p(1, 3; n) and their representations will be introduced in section 8, and the physical relevance
of the representations ofp(1, 3;N) will be discussed in section 9.

4. IRs of class I

For the time-like representations (3.6a) there exists an additional Casimir operator, namely
C3 = P0/|P0|, whose eigenvalues areε = ±1. First we shall consider the caseε = +1 and
determine ‘a little Wigner parasuperalgebra’aI associated with the time-like four-momentum
taken in the formP = (M, 0, 0, 0). For this particular choice ofP we define the three-vector
jk by the indentities

Bk = Wk +Xk = −MSk +Xk ≡ Mjk k = 1, 2, 3 (4.1)
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and find that relations (3.4b) take the form

[B0,Q
i
A] = 1

2MQi
A [B0, Q̄

i
A] = − 1

2M Q̄i
A (4.2)

[jk,Q
i
A] = [jk, Q̄

i
A] = 0. (4.3)

Moreover, the vectorjk satisfies the commutation relations

[jk, jj ] = iεkjljl (4.4)

and the corresponding relations (2.2) reduce to

[Qi
A, [Q̄

j

B,Q
k
C ]] = 4δij δABMQ

k
C [Q̄i

A, [Q
j

B, Q̄
k
C ]] = 4δij δABMQ̄

k
C

[Qi
A, [Q

j

B,Q
k
C ]] = [Q̄i

A, [Q̄
j

B, Q̄
k
C ]] = 0.

(4.5)

Let us note two things: first, that according to (3.3), relations (4.2) become identities
provided relations (4.5) are true, and secondly, that relations (4.5) are equivalent to relations
(1.1) for para-fermions.

Thus we see that the little Wigner parasuperalgebraaI is just a direct sum of the Lie
algebra whose basis elements areja and of the algebra of operatorsQA, Q̄A characterized by
the double commutation relations (4.5).

Relations (4.4) defineso(3), i.e. the Lie algebra of the rotation groupSO(3). IRs of this
algebra are well known and are determined by integers or half-integersj (see, e.g., [17]).

Relations (4.5) determine the algebra of the 2N creation and annihilation operators for
para-fermions. These operators form a representation of the algebraso(4N + 1) [18].

To prove the isomorphism of the algebra (4.5) andso(4N + 1) explicitly, we express
superchargesQi

A, Q̄
i
A and their commutators in terms of generatorsSkl = −Slk (k, l =

1, 2, . . . ,4N + 1) of so(4N + 1):

Qi
A = −(−1)A

√
2M(S4N+1 2N(A−1)+2i−1− iS4N+1 2N(A−1)+2i )

Q̄i
A = −(−1)A

√
2M(S4N+1 2N(A−1)+2i−1 + iS4N+1 2N(A−1)+2i )

(4.6)

[Qi
A, Q̄

k
B ] = (−1)(A+B)2M

[−S2N(A−1)+2i−1 2N(B−1)+2k − S2N(B−1)+2k−1 2N(A−1)+2i

+ i
(
S2N(A−1)+2i−1 2N(B−1)+2k−1 + S2N(A−1)+2i 2N(B−1)+2k

)]
[Qi

A,Q
k
B ] = (−1)(A+B)2M

[
S2N(A−1)+2i−1 2N(B−1)+2k + S2N(A−1)+2i 2N(B−1)+2k−1

+ i
(
S2N(A−1)+2i−1 2N(B−1)+2k−1− S2N(A−1)+2i 2N(B−1)+2k

)]
[Q̄i

A, Q̄
k
B ] = (−1)(A+B)2M

[−S2N(A−1)+2i−1 2N(B−1)+2k − S2N(A−1)+2i 2N(B−1)+2k−1

+ i
(
S2N(A−1)+2i−1 2N(B−1)+2k−1− S2N(A−1)+2i 2N(B−1)+2k

)]
.

(4.7)

Equations (4.6), (4.7) are invertible, so that

S4N+1 2N(A−1)+2i−1 = −(−1)A
1

2
√

2M

(
Q̄i
A +Qi

A

)
S4N+1 2N(A−1)+2i = (−1)A

i

2
√

2M

(
Q̄i
A −Qi

A

)
S2N(A−1)+2i−1 2N(B−1)+2k = −(−1)(A+B) 1

8M

[
Q̄i
A +Qi

A, Q̄
k
B −Qk

B

]
(4.8)

S2N(A−1)+2i−1 2N(B−1)+2k−1 = −(−1)(A+B) i

8M

[
Q̄i
A −Qi

A, Q̄
k
B +Qk

B

]
S2N(A−1)+2i 2N(B−1)+2k = (−1)(A+B) i

8M

[
Q̄i
A −Qi

A, Q̄
k
B −Qk

B

]
.
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Using (4.5), (4.8) we obtain the following commutation relations:

[Skl, Smn] = −i(gkmSln + glnSkm − gknSlm − glmSkn) (4.9)

(wheregkl = −δkl , in whichδkl is the Kronecker symbol) which are specific to the Lie algebra
so(4N + 1).

The IRs of the algebraso(4N + 1) are determined by the set of numbers(n1, n2, . . . , n2N)

which are either integers or half-integers and satisfy the inequalitiesn1 > n2 · · · > n2N > 0.
For the explicit form of the matricesSkl see, e.g., [18].

Thus we have proved that forPνP ν > 0 the algebraaI is equivalent to a direct sum of the
algebrasso(3) andso(4N + 1):

aI = so(3)⊕ so(4N + 1). (4.10)

As follows from the above discussion, the IRs of the algebrap(1, 3; n) that belong
to class I with positive energy are labelled by the following sets of numbers:(M, j, ε =
1, n1, n2, . . . , n2N). The explicit expressions for the corresponding Pauli–Lubanski vector
and for the parasupercharges can be found from (3.2), (4.1), (4.6) by means of the Lorentz
transformation (specified in the appendix) and are of the form:

W0 = paSa Wa = εMSa +
paSbpb

(E +M)
(4.11)

Qi
1 =

1√
E +M

[(S4N+1 2i−1− iS4N+1 2i )(E +M + εp3)

−ε(S4N+1 2N+2i−1− iS4N+1 2N+2i )(p1− ip2)]

Qi
2 =

1√
E +M

[ε(S4N+1 2i−1− iS4N+1 2i )(p1 + ip2)

−(S4N+1 2N+2i−1− iS4N+1 2N+2i )(E +M − εp3)]
(4.12)

Q̄A = Q+
A

where

ε = 1 E =
√
M2 + p2 p2 = p2

1 + p2
2 + p2

3

Sa = 1

2

n−1∑
i=0

(
1

2
εa b+4i c+4iSb+4 c+4i + S4(i+1) a+4i

)
(4.13)

andεabc is an absolutely antisymmetric tensor of rank 3. The explicit expressions for the
generators of the Poincaré group, corresponding to the Pauli–Lubanski vector (4.11), are given
by

P0 = εE Pa = pa
Jab = xapb − xbpa + εabcSc (4.14)

J0a = x0pa − iε
2

[
∂

∂pa
, E

]
+

− ε εabcpbSc
E +M

wherexa = i∂/∂pa, andx0 is a parameter which can be set zero without loss of generality.
Let us remark that the operators (4.12)–(4.14) are hermitian with respect to the following

scalar product:

(ψ1, ψ2) =
∫ ∞
∞
ψ+

1ψ2 d3p (4.15)
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whereψα = ψα(p) arem-component wavefunctions, forming a basis of them-dimensional
IR D(n1, n2, . . . , n2N) of the algebraso(4N + 1).

In contrast to the case of Poincaré superalgebra [7] for which the energy sign operator has
positive eigenvalues only, the algebrap(1, 3;N) admits a representation with both signs of
the Casimir operatorC3.

For the caseε = −1, i.e. for negative energy, the rest frame four-momentum is of the
form P = (−M, 0, 0, 0) with M > 0. In this frame relations (2.2) are of the form

[Qi
A, [Q̄

j

B,Q
k
C ]] = −4δij δABMQ

k
C [Q̄i

A, [Q
j

B, Q̄
k
C ]] = −4δij δABMQ̄

k
C

(4.16)
[Qi

A, [Q
j

B,Q
k
C ]] = [Q̄i

A, [Q̄
j

B, Q̄
k
C ]] = 0

(cf equations (4.5)).
Similarly to (4.6)–(4.8), it is possible to show that the algebra (4.16) is isomorphic

to the algebraso(1, 4N) whose representations are discussed in [19]. The corresponding
basis elements of the algebrap(1, 3;N) again have the form (4.12)–(4.14) where, however,
ε = −1 and Skl are now the basis elements of an IR of the algebraso(1, 4N) which
satisfy the commutation relations (4.9) (in which the non-zero components ofgµν are
gνν = −1, ν 6= 4N + 1 andg4N+1 4N+1 = 1). A description of the IRs of the algebraso(1, 4N)
in complete detail can be found in the book [19].

Thus, in this section we have enumerated all the class I IRs of the extended Poincaré
parasuperalgebrap(1, 2;N) and have found the explicit expressions of the basis elements.

5. IRs of class II

To this class of IRs we have again the additional Casimir operatorC3 = P0/|P0| with the
eigenvaluesε = ±1. As previously, we shall consider the caseε = +1 first.

To determine the corresponding little Wigner parasuperalgebraaII we choose the light-like
four-momentumP in the formP = (M, 0, 0,M). Then the algebra (2.2) reduces to the form

[Qi
2, [Q̄

k
2,Q

j

2]] = 8MδikQ
j

2 [Q̄i
2, [Q

k
2, Q̄

j

2]] = 8MδikQ̄
j

2
(5.1)

[Qi
2, [Q

k
2,Q

j

2]] = [Q̄i
2, [Q̄

k
2, Q̄

j

2]] = 0

[Qi
2, [Q̄

k
2,Q

j

1]] = 8MδikQ
j

1 [Q̄i
2, [Q

k
2, Q̄

j

1]] = 8MδikδABQ̄
j

1

[Qi
1, [Q̄

k
1,Q

j

A]] = [Q̄i
1, [Q

k
1,Q

j

A]] = 0 (5.2)

[Qi
A, [Q

k
B,Q

i
C ]] = [Q̄i

A, [Q̄
k
B, Q̄

j

C ]] = 0.

Now expressingQj

A in terms ofSkl (k, l = 1, 2, . . . ,2N + 1), namely

Q
j

2 = 2
√
M
(
S2N+1 2j + iS2N+1 2j−1

)
Q̄
j

2 = 2
√
M
(
S2N+1 2j − iS2N+1 2j−1

)
(5.3)[

Q̄k
2,Q

j

2

] = 4M
(
iS2k 2j + iS2k−1 2j−1 + S2k−1 2j − S2k 2j−1

)
.

we find that operatorsSkl satisfy relations (4.9) withgkl = −δkl, i.e. they form a basis of the
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algebraso(2N + 1). Since relations (5.3) are invertible

S2N+1 2j = 1

4
√
M

(
Q
j

2 + Q̄j

2

)
S2N+1 2j−1 = i

4
√
M

(−Qj

2 + Q̄j

2

)
S2j 2k = − i

16M

[
Q
j

2 + Q̄j

2,Q
k
2 + Q̄k

2

]
S2j−1 2k−1 = i

16M

[
Q
j

2 − Q̄j

2,Q
k
2 − Q̄k

2

]
S2j 2k−1 = − 1

16M

[
Q
j

2 + Q̄j

2,Q
k
2 − Q̄k

2

]
(5.4)

the algebra (5.1) reduces to the algebraso(2N + 1) whose IRs are labelled by the set
of N numbers which are all integers or half-integers and which satisfy the inequalities
n1 > n2 > · · · > nN > 0.

In order to describe the structure of the little Wigner parasuperalgebraaII we notice two
facts. First, the relations (5.2) only have trivial solutions forQ

j

1 andQ̄j

1.
Secondly, in accordance with (3.4b), (5.4), (4.4) we obtain

B3 = B0 [B0, B1] = iMB2 [B0, B2] = −iMB1 [B0, B1] = 0. (5.5)

Defining the operatorsT0, T1, T2 by the following formulae:

B0 = W0 +X0 ≡ M(T0 − 1
2(Nn1− Ŝ3)) B1 = W1 ≡ T1 B2 = W2 ≡ T2 (5.6a)

wheren1 is the main quantum number characterizing the IR of the algebraso(2N + 1),

Ŝ3 = S12 + S34 + · · · + S2N−1 2N (5.6b)

we obtain the following relations from (5.5):

[T0, T1] = iT2 [T0, T2] = −iT1 [T1, T2] = 0 (5.7)

[T0, Sab] = [T1, Sab] = [T2, Sab] = 0. (5.8)

We conclude from (5.8) that the algebraaII for class II representations is a direct sum of the
algebrasso(2N + 1) ande(2), which are determined by relations (4.4) and (5.7), respectively.

Thus, we have found the explicit form of the operatorsWν, Q
i
A, Q̄

i
A in the reference frame

P = (M, 0, 0,M). To obtain explicit expressions for these operators (and the corresponding
generatorsPν, Jνσ ) in an arbitrary reference frame it is sufficient to make the corresponding
rotation. As a result we get

Qi
1 =
√

2(−p1 + ip2)√
p + p3

(S2N+1 2i − iS2N+1 2i−1)

Q̄i
1 =
√

2(−p1− ip2)√
p + p3

(S2N+1 2i + iS2N+1 2i−1)

Qi
2 =

√
2(p + p3)(S2N+1 2i − iS2N+1 2i−1)

Q̄i
2 =

√
2(p + p3)(S2N+1 2i + iS2N+1 2i−1)

(5.9)

and

P0 = εp Pa = pa
Jab = xapb − xbpa + εabcT̂0

pc + δc3p

p + p3
(5.10)

J0a = x0pa − 1

2
ε[p, xa]+ +

εabcTbpc

p2
− εabcpbnc(εT̂0p

2 − Tapa)
p2(p + p3)
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where

p =
√
p2

1 + p2
2 + p2

3 n1 = n2 = 0 n3 = 1

T3 = 0 T̂0 = T0 − 1
2(Nn1 + Ŝ3)

Ŝ3 is defined in (5.6b), andT0, T1, T2 are the basis elements of the IRs of the algebrae(2)
specified in (5.7).

In the important caseT 2
1 +T 2

2 = 0 (i.e. for representations with a discrete spin), equations
(5.10) are simplified and reduced to the form

P0 = εp Pa = pa
Jab = xapb − xbpa + εabc(2λ−Nn1− Ŝ3)

pc + δc3p

p + p3
(5.11)

J0a = x0pa − 1

2
ε[p, xa]+

εabcpbnc(2λ−Nn1− Ŝ3)

p2(p + p3)

where bothλ andn1 > 0 are either arbitrary integers or half-integers.
For ε = −1 we can choose the light-like four-momentum in the formP =

(−M, 0, 0,−M). The relations corresponding to (2.2) can be obtained from (5.1), (5.2)
by takingM → −M. Then, using expression (5.3) again, we conclude thatSkl satisfy
relations (4.9) where the non-zero components ofgµν are gnn = −1, n < 2N + 1, and
g2N+1/2N+1 = 1. In other words,Skl form just the algebraso(1, 2N), and the algebraaII is a
direct sume(2)⊕ so(1, 2N).

Consequently, the above IRs of the extended Poincaré parasuperalgebra for the light-like
four-momenta are qualitatively different forε = +1 andε = −1. In the caseε = +1 these
IRs are labelled byN + 2 quantum numbersε = 1, r, n1, n2, . . . , nN (wheren1, n2, . . . , nN
are Gelfand–Zetlin numbers forso(2N + 1), andr is an eigenvalue of the Casimir operator
T 2

1 + T 2
2 of the algebrae(2)), or for r = 0 by (ε = 1, λ, n1, n2, . . . , nN ) (whereλ are integers

or half-integers). Forε = −1 the IRs are specified by the eigenvalues of the Casimir operators
of the non-compact algebrase(2) andso(1, 2N), which are described, e.g., in [15] and [19].

6. IRs of class III

To obtain the corresponding little Wigner parasuperalgebraaIII we choose the space-like four-
momentum in the formP = (0, 0, 0, η). The corresponding double commutation relations
(2.2) reduce to the form

[Qi
A, [Q̄

j

B,Q
k
C ]] = (−1)Aδij δAB4ηQk

C [Q̄i
A, [Q

j

B, Q̄
k
C ]] = (−1)Aδij δAB4ηQ̄k

C

[Qi
A, [Q

j

B,Q
k
C ]] = [Q̄i

A, [Q̄
j

B, Q̄
k
C ]] = 0.

(6.1)

Introducing the operators̃J01, J̃02 andJ̃12 in accordance with the following relations:

ηJ̃01 ≡ B2 = J01η +X2 ηJ̃12 ≡ B1 = −J02η +X1

ηJ̃02 ≡ B0 = −J12η +X0

(6.2)

and taking into account thatB3 = X3, from equation (3.4b) we find that

[J̃αβ,QA] = [J̃αβ, Q̄A] = 0 α, β = 0, 1, 2 (6.3)

[J̃αβ, J̃ρσ ] = i(gασ J̃βρ + gβρJ̃ασ − gαρJ̃βσ − gβσ J̃αρ) (6.4)

whereg00 = −g11 = −g22 = 1, gαβ = 0, α 6= β.
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In accordance with (6.1)–(6.4) the algebraaIII corresponding to space-like momenta is
equivalent to the direct sum of the algebraso(1, 2) (defined by relations (6.4)) and the algebra
defined by the double commutation relations (6.1). Expressing the parasupercharges in terms
of Skl via (4.6), (4.7) withM replaced byη, we conclude that the corresponding matricesSkl
satisfy relations (4.9), where the non-zero components ofgµν aregnn = 1, n < 2N + 1 and
gnn = −1, n > 2N . In other words, relations (6.1) specify the algebraso(2N, 2N + 1).

Thus we have shown that the little Wigner parasuperalgebraaIII for representations of
class III is isomorphic to a direct sum of two non-compact algebras, namely, ofso(1, 2) and
so(2N, 2N + 1).

Taking the generatorsPµ, Jµν,Qi
A andQ̄i

A in the form expressed in (6.2), (4.6), (3.1)
and performing Lorentz transformation and rotation corresponding to their transition to an
arbitrary reference frame (see equations (A.2), (A.3)), we find that the basis elements of the
extended Poincaré parasuperalgebra can be written as

Pµ = pµ Jab = xapb − xbpa + S̃ab

J0a = x0pa − 1
2[xa, p0]+ + S̃0a

Ja3 = xap3− x3pa − S̃abpb − S̃a0p0

p3 + η

J03 = x0p3− 1

2
[x3, p0]+ − S̃0apa

p3 + η

Qi
1 =

1√
η + p3

[
(S4N+1 2i−1− iS4N+ 2i )(η + p3− p0) (6.5)

+ (S4N+1 2N+2i−1− iS4N+1 2N+2i )(p1− ip2)
]

Qi
2 =

1√
η + p3

[
(S4N+1 2i−1− iS4N+1 2i )(p1 + ip2)

− (S4N+1 2N+2i−1− iS4N+1 2N+2i )(η + p3 + p0)
]

Q̄A = Q+
A

where

p2
0 = p2 − η2 S̃12 = J̃12 + S3

S̃01 = J̃01 + S1 S̃02 = J̃02 + S2.

Here theJ̃αβ are the basis elements of the algebraso(1, 2) introduced in (6.4), and theSa are
defined in (4.13) withSkl being the elements of the algebraso(2N + 1, 2N).

7. Special representations

In this section we shall show how to construct special representations of the algebrap(1, 3;N)
namely representations in which the Poincaré generatorsPµ, Jµν have the form

Pµ = i ∂
xµ

Jµν = xµ ∂
xν
− xν ∂

xµ
+ Sµν (7.1)

with Sνσ being numerical matrices. These representations (in which the spin partSµν of any
generatorJµν commutes with the orbital partxµ ∂/xν−xν ∂/xµ) are frequently used in various
physical applications.
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We takeSνσ in the form

Sab = εabcSc S0a = iSa (7.2)

where theSa are the matrices defined in (4.13). Then the corresponding parasupercharges can
be expressed as

Q
j

1 =
√

2M(S4N+1 2j−1− iS4N+1 2j )

Q
j

2 = −
√

2M[(S4N+1 2N+2j−1− iS4N+1 2N+2j )

Q̄1 =
√

2

M

[
(p3− p0)(S4N+1 2j−1 + iS4N+1 2j )

+ (p1 + ip2)(S4N+1 2N+2j−1 + iS4N+1 2N+2j )
]

Q̄2 = −
√

2

M

[
(p0 + p3)(S4N+1 4N+2j−1 + iS4N+1 4N+2j )

+ (p1− ip2)(S4N+1 2j−1 + iS4n+1 2j )
]
.

(7.3)

It is easy to verify that the operators (7.1)–(7.3) satisfy relations (2.1), (2.2), (2.4), and
consequently realize a representation of the extended Poincaré parasuperalgebra. Moreover,
assuming thatPνP ν = M2 > 0, p0 = E = (p2 +M2)1/2, it is possible to prove that this
representation is irreducible. Indeed, the corresponding generators (7.2), (7.3) can be reduced
to the form (4.12), (4.14) using the transformation

Jµν → UJµνU
−1 Pµ→ UPµU

−1

QA→ UQAU
−1 Q̄A→ UQ̄AU

−1
(7.4)

where

U = exp

(
iS0apa

p
arctanh

p

E

)
. (7.5)

We notice that superchargesQj

A andQ̄j

A are not conjugated with respect to the usual scalar
product (4.15). However, they are conjugated with respect to the following scalar product:

(ψ1, ψ2) =
∫
ψ1Mψ2 d3x

in whichM = U+U = exp
(

2iS0apa
p

arctanhp
E

)
is a positive definite metric operator.

8. Internal symmetries

Now shall demonstrate that any IR of the algebrap(1, 3;N) described in the previous sections,
can be extended to a representation of the algebra includingp(1, 3;N) and the internal
symmetry algebra. In other words, the carier space of an IR of the extended Poincaré
parasuperalgebrap(1, 2;N), appears to be also a carier space of a representation of the algebra
u(N) whose theN2, generatorsTab, a, b = 1, 2, . . . , N , satisfy the following relations:[

Pµ, Tab
] = [Jµν, Tab] = 0 (8.1a)[

Tab,Q
i
A

] = f ikabQk
A (8.1b)

[Tab, Tcd ] = δbcTab − δadTbc. (8.1c)

The last relation simply determines the algebrau(N) in the Okubo basis [20].
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Let us start with the case of light-like four-momenta considered in section 5. The
corresponding parasupercharges are represented in terms of matricesSkl satisfying the algebra
so(2N +1). The related generators of the internal symmetry algebra can be expressed in terms
of basis elements of the algebraso(2N + 1) as follows:

Tnn = 1

N

(
1− Ŝ3 +NS2n−1 2n

)
Tab = 1

2

(
S2a 2b−1− S2a−1 2b + iS2b−1 2a−1− iS2a 2b

)
b > a (8.2)

Tba = T +
ab

whereŜ3 is the matrix defined in (5.6b), a, b,= 1, 2, . . . , N .
It is easy to verify that the operators (8.2) satisfy relations (8.1), where

f ikab =


δinδka − 1

N
δik a = b = n

2δiaδkb b > a

2δibδka b < a.

(8.3)

For the casePµPµ > 0 the parasupercharges can be expressed in terms of the basis
elements of the algebraso(4N + 1), and the generators of the internal symmetry algebra can
be chosen in the form

Tnn = 1

N

(
1−3 +NS2n−1 2n +NS2N+2n−12N+2n

)
Tab = 1

2

(
S2a 2b−1− S2a−1 2b + S2N+2a 2N+2b−1− S2N+2a−1 2N+2b + iS2b−1 2a−1

− iS2a 2b + iS2N+2b−1 2N+2a−1− iS2N+2a 2N+2b
)

a < b

Tba = T +
ab

(8.4)

where

3 = S12 + S34 + S56 + · · · + S4N−1 4N a, b,= 1, 2, . . . , N.

The commutation relations ofTab with Pµ, Jµν, Qi
A are given in (8.1), (8.3).

For class III IRs the generators of the internal symmetry group again take the form (8.4)
where, however, theSkl are the basis elements of the Lie algebra of the non-compact group
SO(2N, 4N + 1).

Thus, as in the case of the Poincaré superalgebra (cf [2, 3]), the algebrap(1, 3;N) can
be extended by the generators of the internal symmetry group which is then quite simply the
familiar groupU(N). These generators can be expressed in terms of linear combinations of
the basis elements of the orthogonal algebras which generate the IRs of the extended Poincaré
parasuperalgebra.

9. Discussion

In the previous sections we have classified and constructed the irreducible representations (IRs)
of the Poincaŕe parasuperalgebra with an arbitrary number of parasupercharges. Moreover, we
have presented the explicit form of the basis elements of the algebrap(1, 3;N) in terms of the
matrices belonging to the IRs of the (pseudo)orthogonal algebrasso(4N + 1), so(1, 4N), . . .,
etc. In other words, we had taken an alternative route to the usual paragrasmanian variables [5].

Let us briefly discuss the spin content of the corresponding parasupermultiplets and
possible physical interpretations of the representations obtained.
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We start with IRs of class I. These representations are reducible with respect to the Poincaré
algebrap(1, 3), which is a subalgebra ofp(1, 3;N).

Let us consider the case when the internal spinj is equal to zero. Starting with (4.14)
and calculating the corresponding Casimir operatorC = WνW

ν of the subalgebrap(1, 3), we
obtain

WµW
µ = M2S2 (9.1)

whereS = (S1, S2, S3) and theSa are the matrices defined in (4.13). These matrices form
a subalgebraso(3) of the algebraso(4N + 1) and realize a reducible representation of this
subalgebra. Reducing the IRD(n1, n2, . . . , n2N) to the corresponding representations of the
spin algebraso(3), we obtain the following set of eigenvalues of the Casimir operator of the
Poincaŕe group:

WµW
µψ = −M2s(s + 1)ψ

s = N n1 + n2

2
, N

n1 + n2 − 1

2
, N

n1 + n2 − 2

2
, . . . , 0

(9.2)

wheren1 and n2 are respectively the first and second quantum numbers enumerating the
corresponding IR of the algebraso(4N + 1).

For the casej 6= 0 (see equations (4.7), (4.14)) the possible spin values can be found as a
result of summation of the two momenta, i.e.j andS of (4.13). Instead of (9.2) we get

s = N n1 + n2

2
+ j, N

n1 + n2

2
+ j − 1, . . . , s0

s0 =


0

N(n1 + n2)

2
> j

j − n1 + n2

2

N(n1 + n2)

2
< j.

(9.3)

Thus the IRs of the algebrap(1, 3;N) can be viewed as being in correspondence with the
parasupermultiplets of particles with spins given by equations (9.2), (9.3).

As in the case of the Poincaré superalgebra [2], the parasupermultiplets contain bosons as
well as fermions.

Let us now consider one example of an IR ofp(1, 3;N), namely, forn1 = n2 = · · · =
n2N = 1/2. It appears that these representations are IRs of the Poincaré superalgebra, since in
this case the corresponding operatorsQA andQ̄A satisfy the usual anticommutation relations
(2.4) for supercharges.

Thus, we had obtained the IRs of the Poincaré superalgebra as a particular (and the
simplest) case of the representations of our more general algebrap(1, 3;N).

Now consider the IRs of class II with discrete spins. The corresponding basis elements
are defined in (5.9), (5.11).

The related IRs of the algebrap(1, 3; n) are reducible with respect to the subalgebra
p(1, 3). This can be seen by calculating the additional Casimir operatorC of thep(1, 3) in
these representations. We obtain

C = J12p3 + J31p2 + J23p1

p
= λ− 1

2
Nn1− 1

2
Ŝ3

and its eigenvalues̄λ (associated with helicities of particles) in the form

λ̄ = λ, λ− 1
2, λ− 1, . . . , λ−Nn1. (9.4)

Thus, the corresponding parasupermultiplets include both bosons and fermions, whose
helicities are given in (9.4).



5154 J Niederle and A G Nikitin

For n1 = n2 = · · · = nN = 1/2 these IRs ofp(1, 3;N) again reduce to the IRs of the
Poincaŕe superalgebra.

In conclusion, we notice that in the present paper we have studied the simplest
‘paraextension’ of the Poincaré algebra, which includes only para-fermionic charges. The
other extensions of the Poincaré algebra, including central parasupercharges and also para-
fermionic and para-bosonic charges, will be considered elsewere.
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Appendix. Lorentz transformations

Here we present the explicit Lorentz transformations of four-vectors and spinors which have
been used in body of the paper.

The transformationp′µ → pµ = Aµνp′ν , wherepµ are components of a time-like four-
momentaP = (p0, p1, p2, p3), andp′µ are the related components in the c.m. frame, is
performed by the matrix

A = exp

(
− iS0apa

p
arctanh

p

E

)
= 1− i

M
S0apa − 1

M(M +E)
(S0apa)

2 (A.1)

wherep =
√
p2

1 + p2
2 + p2

3,E =
√
p2 +M2, and the matricesS0a have the following non-zero

elements:

(S01)12 = (S01)21 = (S02)13 = (S02)31 = (S03)14 = (S03)41 = i.
The corresponding transformation of the Weyl spinors isQA→ BABQB , where theBAB

are the elements of the following matrix:

B = exp

(
σapa

2p
arctanh

p

E

)
= E +M + σapa√

2M(E +M)
in whichσa are the Pauli matrices.

The rotation transformation(M, 0, 0,M) → (p0, p1, p2, p3) for a light-like four-
momentum is performed by the matrix

A = exp

− iS3apa√
p2

1 + p2
2

arctan

√
p2

1 + p2
2

p3

 = 1− i S3apa

p
− (S3apa)

2

p(p + p3)

in which the non-zero elements ofS3a(a = 1, 2) are given by

(S31)24 = −(S31)42 = (S32)34 = −(S32)43 = i.
The corresponding transformation matrix for spinors is

B = exp
 i(σ1p2 − σ3p1)

2
√
p2

1 + p2
2

arctan

√
p2

1 + p2
2

p3

 = p + p3 + σ1p2 − iσ2p1√
2p(p + p3)

.

Finally, the transformation of the space-like four-vector(0, 0, 0, η)→ (p0, p1, p2, p3) is
performed by the matrix

A = 1 +
iS3µp

µ

η
+
(S3µp

µ)2

η(p3 + η)
. (A.2)
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The related transformation matrix for spinors is given by

B = η + p3− σ3p0 − iσ2p1 + iσ1p2√
η(η + p3)

. (A.3)
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